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LIQUID CRYSTALS, 1988, VOL. 3, No. 5, 573-582 

On the anomalous temperature dependence of ferroelectric 
Sc. liquid crystals 

by MASAHIRO NAKAGAWA 
Department of Electrical Engineering, Faculty of Engineering, The Technological 
University of Nagaoka, Kamitomioka 1603- 1, Nagaoka, Niigata 940-2 I ,  Japan 

(Received 25 September 1987; accepted 30 December 1987) 

A biaxial elastic model for the temperature dependence of Sc. helical pitch 
is proposed on the basis of a phenomenological theory of Sc. liquid crystals 
accompanied by a biaxial molecular ordering playing an important role for the 
anomalous behaviour of the helical pitch near the Sc.-S, transition point. In 
the Sc. phase of p-(n-decyloxybenzylidene)-p-amino-(2-methylbuthyl)-cinnamate 
(DOBAMBC), a qualitative agreement with the observed helical pitch is found by 
choosing a few material parameters concerned with a biaxial elasticity and an 
anisotropy of the elastic constants. 

1. Introduction 
In most ferroelectric Sc. liquid crystals, a fascinating temperature dependence 

of the Sc. helical pitch has been observed [1-3]. First a weak temperature dependence 
of the S,. helical pitch is found relatively far from the Sc.-SA transition points. 
As a whole the S,. helical pitch slowly increases with increasing temperature. Next 
an anomalous temperature dependence of the helical pitch, i.e. a steeply decreasing 
helical pitch towards the Sc,-SA transition point, is also observed in the temperature 
range T, - T < 1 (K); here T, denotes the Curie temperature [2], Kondo et al. 
studied the temperature dependence of the helical pitches for nOBAMBC homolo- 
gous in the vicinity of the Sc.-SA transition points by means of a laser diffraction 
method [2]. Later, by the same method, Blinc et al. worked out a detailed measure- 
ment on the temperature dependence of the DOBAMBC helical pitch [3]. Their 
observations explored that in the immediate vicinity of T, the Sc. helical pitches for 
the homologous series tend to decrease abruptly as if they were going to vanish 
completely at the Curie points. However, they confirmed that the helical pitches did 
not vanish completely at the Sc.-SA transition points but remained to be certain finite 
values. In addition Kondo et al. observed such anomalous behaviour of the helical 
pitch in the S,. sample with a cell thickness of more than 100pm in which any 
anchoring effect may be neglected [2]. 

To explain theoretically the above-mentioned anomalous behaviour of the helical 
pitch, some different approaches have been so far proposed [4-6,151. First Osipov and 
Pikin put forward a qualitative explanation for the anomalous flexoelectric coefficient 
from a molecular theoretical aspect [5]. As far as we are aware, however, no quan- 
titative comparison with an experimental result has been reported up to date. Next 
from a phenomenological aspect, Yamashita and Kimura [4] investigated the effect of 
the critical director fluctuation on the temperature dependence of the S,, helical pitch 
based on the Landau theory originated by Pikin and Indenbom [8]. They concluded 
that a considerably large thermal fluctuation of the tilt angle near the S,.-SA 
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574 Masahiro Nakagawa 

transition point may increase the number of turns of the helicoidal structure and 
result in such anomalous behaviour of the S,, helical pitch, and that the helical pitch 
completely vanishes at the S,.-S, transition point proportional to the square of the 
molecular tilt angle [4]. In accord with their conclusion, however, the critical fluctu- 
ation effect takes no account of the anomalous behaviour for such a large mono- 
domain size confirmed experimentally with a sufficiently thick sample [2]. Apparently 
this conclusion contradicts the experimental finding that the anomalous behaviour is 
independent of a sample thickness of more than about 100pm [2]. In fact, as was 
noted later by Musevic et al. [18], the critical director fluctuation considered by 
Yamashita and Kimura [4] cannot result in the experimentally observed anomalous 
temperature dependence of the helical pitch. 

Alternatively Blinc et al. tried to explain such anomalous behaviour including a 
non-chiral biquadratic coupling term between the molecular tilt and the polarization 
as well as an anharmonic term into the conventional Landau free energy derived by 
Pikin and Indenbom [ I ,  3,7,8, 191. In their approach, the non-chiral biquadratic term 
is considered to be related with a bipolar ordering about the long molecular axis, and 
plays an important role for the anomalous behaviour of the S,. helical pitch [3]. 
Moreover, although a qualitative agreement with the experimental S,. helical pitch 
was found, they could not explain why the large contribution of the biquadratic 
coupling term between the molecular tilt and the spontaneous polarization was 
required. 

Analogously, Huang and Dumrongrattana [6] also proposed a generalized mean- 
field model for the Sc.-S, transition similar to that proposed by Zeks [7]. They found 
good agreement with the experimental data by choosing a number of adjustable 
parameters for DOBAMBC. Like Blinc et al. [3], they also considered that the 
anharmonic chiral term plays an important role in the slow variation of the S,, helical 
pitch far from the Sc.-SA transition point. Their approaches suggested that the bipolar 
ordering might be significant for the anomalous behaviour of the helical pitch. Such 
a bipolar ordering about the long molecular axis may be strongly coupled to a biaxial 
ordering in S,, phases. As is well known for the Sc phase, the biaxial order results 
in the biaxiality of the refractive indices more than the bipolar one [9]. This may be 
also the case for the Sc. phase since the difference in thermodynamic properties 
between chiral DOBAMBC as S,, and a racemic mixture as S, is found to be 
negligibly small [3, 181. Moreover, as was reported by Straley [ I  81, such biaxiality may 
exist even in nematic and SA phases, which are usually supposed to be uniaxial since 
the biaxial order is very small. In fact, as is experimentally confirmed by Blinc et al. 
[3, 191, there exists a bipolar ordering about the long molecular axes in the S,, phase. 
The orders of the biaxial and the bipolar orderings are found to be comparable in S, 
phases [9]. Consequently, the free energy expression in the S,. phase has to be 
extended to include a possible biaxiality. From these aspects, it seems to be significant 
to introduce a biaxiality into the S,. free energy originated by Pikin and Indenbom 
and its modified versions [6-8, 111. 

As will be explored in this work, such a biaxial elastic feature becomes dominant 
in the elastic free energy in the immediate vicinity of the Sc,-SA transition point 
because both twist and bend elastic energies in the S,. helicoidal structure become 
rather small compared with the biaxial elastic energy, and therefore have no role in 
the behaviour of the helical pitch near the transition point. From a similar aspect, 
Goossens pointed out that the anomalous behaviour of the S,, helical pitch may result 
from such a possible molecular biaxiality in the vicinity of the Curie point [ 151. In his 
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Temperature dependence of S,. 575 

conclusion, however, the helical pitch vanishes proportional to the square of the tilt 
angle in contradiction with the experimental observations [ 1-31. 

Several different models for the anomalous temperature dependence of the S,, 
helical pitch have been proposed by many workers to date, but the situation has still 
to be clarified as mentioned above. The purpose of the present paper is to show the 
relation between such anomalous behaviour and the molecular biaxial ordering which 
is not included in the nematic-like free energy of S,. liquid crystals formulated by 
Lagerwall and Dahl [l 11. In addition we will explore the significance of the anisotropy 
of the elastic constant as well as the biaxial ordering on the temperature dependence 
of the Sc. helical pitch. To clarify the role of the biaxiality in this work, we shall ignore 
the biquadratic coupling studied by Blinc et al. for simplicity [3]. From a numerical 
evaluation, for DOBAMBC liquid crystals, one may find a qualitative agreement with 
the experimental helical pitch [3] for a relatively wide temperature range by choosing 
a few parameters as the anisotropy of the elastic constants and the biaxial order 
parameter. In $2 we shall outline in brief a generalized free energy expression based 
on the Landau-de Gennes theory for the biaxial nematics. Then a numerical esti- 
mation for the anisotropy of the elastic constants and the biaxial order parameter is 
given in 93, in comparison with the experimental helical pitch for DOBAMBC by 
Blinc et al. [3] Finally 94 provides a few concluding remarks on the present model. 

2. Theory 
According to Lagerwall and Dahl [l I], the free energy density fs,. for the ferro- 

electric S,, state free from any layer dilatation and distortion can be written as 

G1 P K,  fs,. = e2 + - e4 + - ( V .  n)2 
4 2 

+ 2 + pPps . e  - pfPs .  (n x v x n),  
2% 

where the first and the second terms in the right-hand side correspond to an energy 
density concerned with the molecular tilt in the unwound S ,  state, ~1 and P are 
appropriate constants, n is the local director along the average direction of the long 
molecular axes, K, , K,  and K3 are the splay, twist and bend elastic constants, respect- 
ively, qT is the inherent twist wave number arising from the molecular chirality, % is 
the dielectric susceptibility, pp and pf are the piezo- and the flexoelectric constants, 
respectively, P, is the spontaneous polarization vector, and e is a vector order 
parameter defined by 

e = (n  x v ) ( n . v ) ,  (2) 

where v is the layer normal unit vector. The nematic-like expression equation (1) is 
equivalent to a more general expression derived by Dahl and Lagerwall [21] when no 
layer distortion or dilatation exists. In the free energy fs,., the twist energy pro- 
portional to K2qTn.  V x n is involved. In the s,. phase, however, banana-like s,. 
molecules may possess a biaxial ordering about the long molecular axis as was noted 
in the previous section [9, 10, 151. In addition, as was pointed out by Straley [lo], such 
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516 Masahiro Nakagawa 

a biaxial ordering may exist even in nematic (N) or S, phases. Of course, in such a 
case, there may exist a helicoidal structure even in S, phase as was pointed out by 
Pikin and Indenbom [8]. Therefore such a biaxial effect has to be included in the free 
energy expression. Before introducing the biaxial molecular ordering into the free 
energy &,, it may be convenient to consider first the Landau-de Gennes free energy 
for uniaxial cholesterics [22] in terms of the following uniaxial tensor order parameter: 

(3) 

Here S is the orientational order parameter of the long molecular axes about the local 
director n and leads to 1 for a saturated molecular orientation. Using such a sym- 
metric and traceless tensor order parameter Q ,  , the free energy density may be written 
as 

Q I /  = -  i s ( ~ ,  - hlI /3 ) .  

where Ly and L; are also the elastic constants related to K , ,  K2 and K,,  by 
K2 = 9LyS2/2, K ,  = K3 = 9(2Ly + L;)S2/4 [14], &ijk is the Levi-Civita tensor, and 
the repeated indices follow the Einstein convention. The second elastic constant L! 
stands for the anisotropy of the elastic constants. If L; = 0, then of course there exists 
no anisotropy of the elastic constants for splay, twist and bend deformations, or 
K ,  = K2 = K , .  For most nematics, L! > 0 or K2 < K ,  II K,  is usually observed. As 
was experimentally confirmed by Rosenblatt et al. [20], the condition K ,  II K,  is 
almost satisfied for DOBAMBC. If one needs to remove the degeneracy between K ,  
and K3,  the third-order terms in Q,  has to be included as was pointed out by Schiele 
and Trimper [24]. Such a refined approach will be reported in the near future together 
with some experimental results. At this stage we ourselves shall resort to the second- 
order form expressed by equation (4), which may reasonably be accepted for 
DOBAMBC as was noted above. In a biaxial phase such as S,, we have to introduce 
the following biaxial tensor order parameter instead of the uniaxial one or equation (3): 

b 
2 Q, = $S(ninj - d i j / 3 )  + -(mimj - pipj) ,  

where the unit vectors m and p are defined by 

m = p x n ,  (6) 

and 

p = (v x n>/lv x 4, (7) 
respectively. In equation (9, b stands for a biaxial molecular ordering transverse to 
the long molecular axes [9, 11, 231. If the molecular orientation is biased along m ( p ) ,  
then b > 0 (< 0) as is shown in figure 1. Although both order parameters, S and h, 
can be determined on the basis of a molecular aspect, it is beyond the scope of the 
present work. In the biaxial state such as the S,. phase, the tensor order parameter 
Q,, in equation (4) should be replaced by the biaxial one expressed by equation ( 5 )  as 
was noted by Govers and Vertogen [23] for biaxial nematics. Substituting equation ( 5 )  
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Temperature dependence of S,. 577 

n 
4 

(a) b>O (b) b<O 
Figure 1. An explanation for the biaxial order parameter b. Here n is the longitudinal director 

along the average orientation of the long molecular axes, rn and p are the transverse 
directors perpendicular to n. A Sc. molecule is modelled into the bold bar. (a)  and (b) are 
for b > 0 and b < 0, respectively. 

into equation (4), we can discuss the biaxial S,. phase in a phenomenological manner. 
First minirnizingf& with respect to Ps, we can derive 

P,, = - ( ~ p e ,  + P ~ Q ~ ! , ~ ) .  (8) 

Then the minimized free energy fs,. is given by 

Figure 2. The helical structure along the z axis coincident with the layer normal direction. P 
denotes the helical pitch. 0 and @ are the tilt and the azimuthal angles, respectively. 

Now we shall hereafter restrict our interest to a uniformly wound helicoidal 
structure with the helical axis along the z axis in the laboratory frame as is depicted 
in figure 2. In such a case, the unit vectors n, m and p are simply expressed by 

n = (gcosqz, gsinqz, t), (lOa> 

m = ((cosqz, tsinqz, - u ) ,  ( lob )  

p = (-sinqz, cosqz, 0), (10 c) 

respectively; here g = sin@, 4 = c o s 0  and q = 2n/P is the wave number of the 
helicoidal structure with a helical pitch P(see figure 2). In this case, the non-vanishing 
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578 Masahiro Nakagawa 

components of are given by 

where c is the so-called c director defined by 

c = (cosqz, sinqz, 0). (12) 

Then substituting equation (1 1) into equation (9), after a straightforward calculation, 
we can readily obtain 

where L , ,  L,, LB are qB are defined by 

L; L2 = -(3S - b)2 1: $L;S2, 
4 

LB = 2Lyb2, (15) 

qB = 2qL/(3s - b), (16) 

and 

respectively. Here L, and L2 are an isotropic and an anisotropic components of the 
elastic constants, respectively [14]. LB is an elastic constant proportional to the square 
of the biaxial order b and may play an important role for the stabilization of the 
helical structure near a Sc.-SA transition point. Indeed, if b is assumed to have a finite 
value near the Curie point, the elastic energy concerned with LB may become domi- 
nant because of the factor t2 and result in the anomalous temperature dependence of 
the S,. helical pitch. In equation (13), expanding the above free energy in terms of the 
tilt angle 0, we can easily derive the coefficients of the harmonic and the anharmonic 
terms, proportional to 0 2 q  and 0 4 q  as -(L,qT - L,qB) and (L,q, - 4L,qB)/3, 
respectively. From this result it should be noted here that the harmonic and the 
anharmonic terms may have the same sign, as was assumed in the previous works 
[3,6-81, if L2qB < L, qT < 4L2q, or 4L2qB < L, qT < L2qB. According to the exper- 
imental fact that the polar order parameter of the transverse dipoles is very small, of 
the order of 0.1-0.01 [12], the biaxial ordering is also weak [9]. Therefore such a 
transverse twist energy concerned with LB seems to be much smaller than the longi- 
tudinal twist energy concerned with L, and L, far from the S,,-SA transition point. 
In the vicinity of the S,.-SA transition point, however, since the tilt angle becomes 
very small and the longitudinal twist energy has a tendency to vanish with the 
increasing temperature, such a transverse twist energy becomes rather dominant in the 
total elastic free energy than the longitudinal one if h remains to be finite at the Curie 
point. Now minimizing equation ( 1  3) with respect to q, one can readily obtain 
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Temperature dependence of Sc., 579 

From this expression we may expect that the helical pitch shows a temperature 
dependence through the temperature dependence of the tilt angle 0. Then eliminating 
q from equation (13), the minimized free energy can be expressed in terms of q and 
5 as 

Finally minimizing the free energy with respect to 0, one can determine numerically 
the temperature dependence of the molecular tilt angle. Then substituting the value 
of 0 into equation (17), we can evaluate the temperature dependence of the helical 
pitch. In the next section, a numerically evaluated result for DOBAMBC will be 
provided and compared with the experimental data by Blinc et al. [3]. 

3. Numerical results 
In this section, let us compare the numerical results with the experimental [3]. 

From equation (17), the helical pitch P can be written as 

respectively, which are to be determined in comparison with experimental observation 
of the helical pitch. Here, of course, we may expect the relation JbB 4 1 as a conse- 
quence of a weak biaxial ordering as was previously noted [9]. Moreover from the 
above expression, we may predict that the helical pitches for q = 0 are the same as 
that for q = 1 or the cholesteric state. Next in a more familiar form, we can rewrite 
approximately the minimized free energy expressed by equation (1  8) as follows: 

a/ B‘ Ll 2 A: - o2 + - o4 + O(W) - - q T  -, 
2 4 2 LT 

.fs,, = 

where 8’ is a constant related to both a and p, and experimentally evaluated [ 131. In 
the mean field approximation, a’ can be assumed to be 

a’ = a”(T* - I ) ,  (24) 

where T* = T/Tc .  From the experimental data for DOBAMBC, Carlsson and Dahl 
[13] evaluated as a’ = 1.84 x lo7 J/m3, p’ = 8.5 x lo5 J/m’ and L,  q t / 2  N 1.  Po can 
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580 Masahiro Nakagawa 

0.985 0.99 0.995 1 

Tk 

Figure 3. Comparison between the theoretical and the experimental results. P and T* are the 
helical pitch and the reduced temperature, respectively. Solid circles give the experimental 
data for DOBAMBC obtained by Blinc et a/. Here 1, = 0.1 15 and IC = 5.7. Curves a, 
b and c are for & = 0, 0.0025 and 0.01, respectively. 

be evaluated as 0.89pm from P at T = T, [3]. Making use of the above-mentioned 
parameters and equations (19)-(21) and (23), one can determine the temperature 
dependence of the S,. helical pitch for certain values of IC and I , .  In figure 3, let 
us present a numerical result as an example together with the experimental helical 
pitch measured by Blinc et al. [3]. From this result, the importance of the biaxial 
elastic contribution to the free energy may be understood. As was previously noted, 
in order to estimate the biaxial order and its temperature dependence in Sc. and SA 
phases, we have to resort to a molecular theory of S,. liquid crystals. However, this 
problem has not been solved as yet and is beyond the scope of the present work. A 
qualitative explanation for the presence of biaxial ordering will be given in the next 
section. At this stage we assume constant values of S and b from the following. For 
the DOBAMBC sample studied by Blinc et al. [3], a qualitative agreement was 
numerically found for 1, = 0.1 15, IC = 5.7 and = 0.0025 as shown in figure 3. 
Here the relation &, < 1 seems to reflect well the fact that the biaxial order parameter 
b is smaller than the uniaxial one of S .  Assuming that S 9 b and S N 1, we can 
evaluate Ibl N 0.08 from equation (22 b). The sign of b may be expected to be negative 
according to the experimental observations for Sc liquid crystals [9]. This is considered 
as a result that the director fluctuation may be more easily induced alongp rather than 
m because the latter fluctuation may be accompanied by the smectic layer dilation 
as was pointed out by Galerne [9]. One may conclude that DOBAMBC liquid 
crystals possess a positive anisotropy of the elastic constants or 1, N L;/(2L3 2: 

(K3 - K2)/K2 > 0. From IC = qe/qT = 2xpPp,-/(3q,) > 0, one may expect that 
p,,p,. > 0 for DOBAMBC because qT > 0. This conclusion is just consistent with the 
experimental findings by Ostrovskii et al. [12]. In addition the present result implies 
that while such an anisotropy of the elastic constants is very small, the effect of it 
becomes important to explain the slowly varying Sc. helical pitch in the region of 
T* < 0.998 as shown in figure 3. This conclusion is just reminiscent of that of 
Goossens who also concluded that the difference K ,  - K, > 0 between the bend and 
the twist elastic constants is significant in explaining the moderate temperature 
dependence in agreement with the present result [15]. In our estimation, the ratio of 
the twist chiral term L,q, to the bend chiral term L,q, may be evaluated as 
I / ( ~ , I c )  2: 1.5. Therefore the competition between the twist and the bend elastic 
energy results in a moderate temperature dependence far from the S,,-S, transition 
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Temperature dependence of &.. 58 1 

point, consistent with Goossens [15]. Next, in our model, the biaxial molecular 
ordering is found to be closely related to the anomalous behaviour in the vicinity of 
the Sc,-SA transition point. This conclusion again corresponds to that of Goossens 
[ 151. He also concluded that the biaxial ordering at the Sc.-S, transition point results 
in the anomalous change of the helical pitch. In his conclusion, however, P vanishes 
at the transition point proportional to O2 which is inconsistent with the experimental 
findings [I-31. To conclude this section, in our model the anisotropy of the elastic 
constants and the biaxial ordering play important roles in the slowly increasing 
and then steeply decreasing helical pitch with increasing temperature, respectively. 
Apparently such anisotropy of the elastic constants was not involved in the approach 
proposed by Blinc et al. [3]. In the next section, we shall give a few concluding remarks 
on the present model. 

4. Concluding remarks 
We have given a simple description of the anomalous temperature dependence of 

the S,, helical pitch. Taking account of the biaxial molecular order about the local 
director in the elastic free energy, we examined the temperature dependence of the S,. 
helical pitch. In our conclusion, both the anisotropy of the elastic constants and the 
biaxial ordering seem to be significant in explaining such an anomalous temperature 
dependence of the S,. helical pitch. In particular it is interesting to see that both the 
bipolar ordering studied by Blinc et al. [3] and the biaxial ordering introduced here 
result in similar anomalous behaviour. As was noted by Straley [lo], the bipolar and 
the biaxial molecular orderings should be strongly coupled to each other. Therefore 
these two effects seem to contribute more or less to the anomalous phenomena. From 
a numerical estimation, we found a qualitative agreement between the theoretical 
temperature dependence and the experimental one for DOBAMBC liquid crystals 
by Blinc et al. [3], and confirmed that the transverse twist elastic constant LB may 
be much smaller than the longitudinal twist elastic constant L ,  by about an order 
of 3. In addition, we could estimate the biaxial order parameter h as -0.08 for 
DOBAMBC. From our result, it may be expected that the critical value of the helical 
pitch with 0 N 0 may be almost the same as with 0 N n/2, and that the temperature 
corresponding to a maximum helical pitch tends to be lowered for the S,, phase with 
a large biaxial order. This prediction has been experimentally confirmed by us for 
4-decyloxybenzylidene-4’-amino- 1p”-methylpropylcinnamate (DOBA- 1 -MPC) and 
will be reported in the near future together with a somewhat refined model related to 
the present work. 

To conclude, we have to mention the physical origin of the biaxial ordering. To 
our knowledge, there exist a few possible origins for such a biaxial ordering. In S, 
phases [9] there exists the anisotropy of the thermal fluctuations of the director which 
induces the biaxial order. In addition the molecular alignment is monoclinic and the 
free rotation about the long molecular axes may be biased, giving rise to biaxiality. 
In the S, phase with 0 = 0, there cannot exist the above-mentioned origins con- 
cerned with the tilted alignment. Nevertheless the biaxiality of the molecular shape of 
S,, liquid crystals may give rise to a biased rotation around the long molecular axes 
as was pointed out by Straley [lo] and Freiser [I61 for biaxial nematics. In their 
conclusions, with an appropriate biaxiality of the molecular interaction, the biaxial 
state becomes more stable than the uniaxial one. Therefore it is plausible there exists 
a biaxial molecular ordering, which as was noted by Goossens [ 151 may be small, not 
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582 Masahiro Nakagawa 

only in the Sc, phase but also in S,. The biaxiality in the S, phase of a S,* liquid 
crystal results in a helicoidal structure for the transverse director m or p instead of the 
longitudinal one n. In fact it is possible for this type of SA phase to exist as was pointed 
out by Pikin and Indenbom [8]. Therefore, in our model, the Sc.-SA transition is 
classified as a structural transition between subgroups C, and D, instead of the 
conventional one between C, and D, . From an  experimental point of view, since the 
optical anisotropy is very small, it seems to be difficult to observe the biaxial helicoidal 
structure in the S, phase by using an optical microscope. It may be possible to detect 
such a biaxiality in the S, phase of S,, liquid crystals by measuring carefully the 
optical dispersion of the transmittance for the normally incident light in a homeo- 
tropically aligned cell. In addition, it is also considered to be important to evaluate 
the microscopic order parameters S and b on the basis of a molecular theory of S,, . 
Considering a biaxial interaction between molecules [ 171 the biaxial twisting power 
may be derived in a molecular theoretical manner. These problems remain to be 
investigated in the future. 

The author would like to thank Professor T. Akahane for his invaluable dis- 
cussions and continuous encouragement throughout the present work. 
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